
Daytripper
Dynamic Translation for Intel’s Loop Stream Decoder

Nick Black
nickblack@linux.com

Abstract
Intel processors since the 65nm Conroe CoreTM2 have included
hardware to queue decoded loops directly into the out-of-order
execution engine. These “Loop Stream Detectors” (LSD) allow
for substantial power savings and, in some cases, performance
improvements. Unfortunately, the LSD can only store instruction
streams meeting a number of architecture-specific restrictions. The
Loop Stream Decoder represents an unmistakable power optimiza-
tion, can be definitively verified via the CoreTMi7’s LSD UOPS
performance counter, and has clearly-defined requirements for suc-
cessful use. All these properties make optimizing for the LSD an
attractive prospect, especially for a runtime translator. Daytripper
consists of a DynamoRIO [1] client module capable of discovering
loops which fail to engage the LSD, analyzing them for valid trans-
formations, and attempting to reschedule their bodies to take full
advantage of this hardware.

Categories and Subject Descriptors D.3.4 [Processors]: Compil-
ers

General Terms Binary translation, instruction decoding

Keywords Loop Stream Detector, Length-Changing Prefix, MSROM

1. Introduction
The x86’s CISC legacy, unique among modern processors, requires
substantial instruction decoding hardware and several pipeline
stages. Recent Intel processors provide no less than four instruction
decoders, along with an MSROM. Of these, only one (“complex”)
decoder can handle instructions decoding to multiple µops; for
very long instructions (those decoding to six or more µops), this
complex decoder must engage the slow Masked-Or ROM unit and
its microcode store. This hardware’s power requirements, not to
mention the havoc wrought on hot loops by front-end stalls, led
to the introduction (on Crusoe CoreTM2 processors) of the original
Loop Stream Detector.

Benefits of the original LSD included [6]:
• The documented ability to shut down instruction fetch and

branch prediction hardware.

Copyright is held by the author.
CS8803DC May 6, Atlanta.

Figure 1. The CoreTM2 Loop Stream Detector

• The possibility of shutting down instruction cache in partes
or in toto, as explored in other processor designs [2] (no such
capability has been mentioned in Intel documentation).

• Elimination of delays due to misaligned branch targets.
• Recovery of execution bandwidth used by branch instructions.

The Loop Stream Detector was improved for the release of
the “Nehalem” CoreTMi7. Moved after the decoding stages, it now
supplies µops directly to execution units (as opposed to instructions
to the decoder).

Figure 2. The CoreTMi7 Loop Stream Detector

Benefits include:
• The entire processor frontend can be powered down during

LSD streaming, as opposed to merely the instruction fetching
hardware.

• Length-Changing Prefix stalls, major sources of delays in the
frontend, are eliminated.

• Stalls due to contention for the single complex instruction de-
coder are avoided, as are the extreme delays due to MSROM-
based decoding.
The Loop Stream Decoder is a microarchitectural property:

it operates wholly without programmer intervention, and is not
visible in the x86 ISA. The LSD will cache any instruction/µop
stream that has looped (branched backwards) 64 times, and meets
the following conditions:
• It requires no more than 4 instruction fetches of 16 aligned

bytes each.



• It contains no more than 4 branches, none of them a CALL or
RET.

• It contains no more than 18 instructions (on CoreTM2).
• It contains no more than 28 µops (on CoreTMi7).

2. Optimizing for the LSD
Optimizing for the LSD requires the abilities to recognize hot
loops, determine whether or not a given loop is suitable for the
LSD, and transform unsuitable loops into suitable forms. This last
must be performed while honoring the original program’s seman-
tics, and (obviously) in a fashion guaranteed to terminate. Daytrip-
per leverages the DynamoRIO binary translation framework for
disassembly and encoding of instruction streams, and its trace ob-
jects (as opposed to blocks) provide suitable recognition of hot
loops.

2.1 Determining LSD suitability
Determining whether or not a loop qualifies for the LSD can be a
difficult task in and of itself. The requirements of the CoreTM2’s
LSD are simple enough for a static compiler to consider, but the
CoreTMi7’s LSD complicates matters by caching µops rather than
instructions. Intel does not (at this time) make public the corre-
spondence of instructions to µops1. These mappings change from
processor to processor or even stepping to stepping, and are fur-
ther mudded by microarchitectural techniques such as Micro- and
Macro-fusion. Any compiler must already have some idea of µop
mappings if it is to fully optimize for decoder resources, but simply
knowing which instructions decode to multiple µops is sufficient
to make full use of Pentium-M, NetBurst, Core and Nehalem mi-
croarchitectures’ “3-1-1” or “4-1-1-1” decoder arrangements.

Thankfully, a performance monitoring counter (LSD UOPS,
event 0xA8) was introduced alongside the improved LSD. While
a static compiler (especially in the absence of profile-guided op-
timization) would be hard-pressed to effectively make use of this
PMC as a litmus (especially as runtime code placement decisions
can affect suitability), a dynamic compiler is well-suited to begin
its search with the counter. Daytripper simply resets the counter on
entrance to a DynamoRIO trace entry callback, and checks it dur-
ing the trace exit. If the counter has changed, the LSD has been
employed, and Daytripper needn’t perform further work. Likewise,
a zero count suggests analysis of the associated trace.

The performance counter also serves to gauge our effective-
ness. Daytripper marks any trace it modifies. Since it never trans-
forms a trace which triggered the LSD, any marked trace with a
non-zero LSD count represents a successful transformation2. Other
marked traces represent wasted work, and are indicative of bugs
in Daytripper’s suitability testing. Given this instant and highly ac-
curate feedback, any errors in µop mapping ought be flushed out
quickly. Daytripper is thus fairly resilient against microarchitec-
tural changes3, or at least automatically discovers any which af-
fect its effectiveness. Furthermore, this allows binaries to be sorted
based on whether they can effectively be transformed (subject,
of course, to the same vagaries which complicate static PGO).
Daytripper translation can thus be foregone when it will have no
effect.

Verifying other properties is a fairly simple (if distinctly un-
pleasant) task. This merely requires knowledge of branch instruc-
tions (at the ISA level) and their LSD limits, location of the code at

1 Agner Fog’s venerable datasheets [3] do publish an approximate corre-
spondence, but these follow processor releases, at best, by several months.
2 This doesn’t hold if DynamoRIO itself triggers the LSD.
3 The author spent significant time planning integrating such a scheme into
GCC’s PGO, thinking it the coolest part of this project.

runtime, disallowed instructions, and properties of the instruction
fetch unit. These last are microarchitectural properties, but thank-
fully not a maintenance burden: the CPUID instruction allows all
relevant properties (page size, instruction cache size, and associa-
tivity)4 to be discovered at runtime.

2.2 Extracting LSD suitability
Transformation, as could be expected, is the most complicated as-
pect of Daytripper’s operation. More correctly, transformation will
be the most complicated aspect; Daytripper, originally a static bi-
nary translator, was reinvented as a dynamic tool very recently.
Such transformations are, for all intents and purposes, beyond
the capability of a static x86 translator. The ubiquity of indirect
branches (even discounting clear linker patch-up points, as can be
determined via cross-referencing ELF’s .plt section) would be
sufficient to exclude most transformations[9]; the x86’s variable
instruction length, relaxed alignment requirements for execution
and access, and support for self-modifying code quickly render the
problem intractable, if it is indeed even decidable.

3. Loop size reduction
For each requirement of the LSD, there exists a corresponding class
of transformations we might perform. Many of them would already
have been executed by a reasonable static compiler, and thus we
oughtn’t expect them to be exploitable in optimized code. This will
be of critical importance when selecting benchmarking tools; it’ll
likely be best to build up a unit testing infrastructure around small,
hand-written assembly snippets.

3.1 Code requires more than 4 fetches.
First, ensure that the loop is properly aligned (this will generally be
true for optimized code). Otherwise, attempt loop size reduction as
outlined in section 3.3. Note that instructions must be minimized
in 3.3, even if the LSD is µop-based; it might thus be necessary to
minimize both µops and instructions on CoreTMi7 processors and
later.

3.2 Code contains more than 4 branches.
Attempt to replace branches with predicated instructions. Daytrip-
per is only active on processors with Loop Stream Detectors, all
of which include the P6-era CMOVxx; it is thus safe to condition-
alize where possible (it is unfortunate that x86 is not a more fully
predicated instruction set, such as ARM [11] or IA64). This trans-
formation is unlikely to slow down the loop body, and thus again
we can expect optimized code to already have used CMOVxx where
applicable. Compilers optimizing for size or speed, however, are
unlikely to use certain bit-parallelism tricks [12] we might exploit,
especially in highly idiomatic arithmetic loops. This might be fer-
tile ground for future research.

3.3 Code is too large
For CoreTM2, or to reduce the number of necessary fetches (see
3.1), we seek to minimize instructions. For CoreTMi7 and beyond,
we seek to minimize µops. These goals are not incompatible, but
neither can they generally be achieved via the same transforma-
tions. Unoptimized code can of course be easily shrunk, but we
assume reasonable optimization for space—in which case we are
unlikely to achieve much reduction—or speed, which has as its
most basic heuristic “minimize dynamic instructions”. Once again,
however, we can perform some “regressive transformations” which
possibly sacrifice performance.

4 Whether the instruction and data caches are unified is irrelevant; we’re
verifying not residency, but boundary crossings.



Whether to do so must be decided considering the benefits
of the Loop Stream Detector. Loops containing length-changing
prefixes, for instance, incur weighty stalls in the decoding logic.
By bypassing the decoders (on CoreTMi7), the LSD may well effect
a net speedup even as it undoes other optimizations. These stalls
have long been known to the compiler-writing community, so it
is unlikely that they’re generated in any real abundance. If code
were found that had been forced to incur LCP stalls so that some
other powerful optimization could be performed, Daytripper could
unleash potent performance gains indeed.

“Magic divisions” trading size for speed [8] could be replaced
with their equivalent constant divisions. ADD/SUB # − 1 instruc-
tions could be replaced with their equivalent INC/DECs, especially if
the condition register-carried dependencies these instructions intro-
duce were demonstrated to be innocuous (perhaps by introducing
a dependency-breaking instruction). Sets of PUSHes and POPs, used
to minimize the number of stack writes, could be replaced with a
single PUSHA/POPA pair. This is unlikely to affect performance neg-
atively, due to a large ratio of cacheline to word lengths (it ought be
noted, however, that these are µop-intensive instructions). In any
case, extensive pushing and popping is unlikely to occur in a hot,
reasonably-optimized loop.

If the 4-fetch limit is not close to being breached (in an extreme
case, 18 single-byte instructions), a counter-intuitive method would
be to eliminate internal NOPs present only for alignment purposes.
Since the LSD eliminates misaligned instruction penalties, these
NOPs have no purpose in a loop streamed from the LSD.

4. Related work
Virtually every reference to the Loop Stream Detector, from GCC
bug reports [4] to various optimization guides, speaks of supposed
performance benefits.

This is wrongheaded.
While it is true that streaming instructions (in the case of Con-

roe) or µops (in the case of Nehalem) from the Loop Stream De-
tector bypasses several pipeline stages, this does not, by itself, rep-
resent a gain in throughput. At a saturated steady state, IPC is inde-
pendent of pipeline length. The LSD applies only to tight loops—
precisely the sections most easily benefited by branch prediction,
large data caches, advanced prefetching and extensive speculation.
In short, it targets code for which Intel has already spent a decade
adding hardware support (as noted earlier, the LSD can remedy
certain decoding perversions specific to the x86 architecture).

The LSD would be highly relevant to research on optimizing for
power, were it not for the facts that:
• It is present only on energy-hungry high-end x86 processors,

poor fits for systems designed to conserve power.
• It is only so effective at reducing power consumption due to the

large transistor budget required for high-speed x86 instruction
decoding; a classic RISC processor could not reap nearly such
significant benefits.

Whether or not the Loop Stream Detector will emerge as the focus
of academic research is debatable. This paper appears to be the
first investigation of dynamic translation for the explicit purpose of
engaging the LSD.

A. Using the LSD UOPS PMC
Existing open source hardware profiling tools have yet to fully
support the CoreTMi7 line of processors. The line represents several
combinations of Family and Model numbers [5]. The following
information is valid as of 2010–05–06.

A.1 Linux’s perf
The perf tool, included in Linux source distributions since 2.6.31,
can support LSD UOPS via use of a “raw counter”. Provide

-e -r 1a8

when an event needs be specified; this selects unit mask 0x1
from PMC identifier 0xa8, designating the LSD UOPS event [7].

A.2 Oprofile
Oprofile requires a patch to properly identify some CoreTMi7 pro-
cessors. The author has submitted it to the Oprofile team; it can be
found at:

http://marc.info/?l=linux-kernel&m=127294830417492.

B. Using DynamoRIO with Daytripper
DynamoRIO requires a patch to properly identify some CoreTMi7
processors. The author has submitted it to the DynamoRIO team; it
can be found at:

http://groups.google.com/group/dynamorio-users/
browse_thread/thread/72dd27ca8f5ead66

Acknowledgments
I am indebted to David Kanter for his excellent comparison of the
Loop Stream Detector to the Pentium 4’s trace cache [10].

I stole my images from Ars Technica.

References
[1] DynamoRIO. http://dynamorio.org/history.html, 2002–.
[2] A.-M. Badulescu and A. Veidenbaum. Power efficient instruction

cache for wide-issue processors. In Innovative Architecture for Future
Generation High-Performance Processors and Systems, January 2001.

[3] A. Fog. Instruction tables: Lists of instruction latencies, through-
puts and micro-operation breakdowns for Intel, AMD and VIA CPUs.
Copenhagen University College of Engineering, 1996–2010.

[4] GCC Bugzilla. Bug 38306 [4.4/4.5/4.6 regression] 15% slowdown
w.r.t. 4.3 of computational kernel on some architectures. http:
//gcc.gnu.org/bugzilla/show_bug.cgi?id=38306.

[5] Intel Corporation. Intel R© Processor Identification and the CPUID
Instruction. Application Note 485. August 2009.

[6] Intel Corporation. Intel R© 64 and IA-32 Architectures Optimization
Reference Manual. Number 248966-018. March 2009.

[7] Intel Corporation. Intel R© 64 and IA-32 Architectures Software Devel-
oper’s Manual. Number 253669-033US. December 2009.

[8] D. E. Knuth. Seminumerical Algorithms, volume 2 of The Art of
Computer Programming. Addison-Wesley Professional, November
1997.

[9] W. Landi. Undecidability of static analysis. In ACM Letters on
Programming Languages and Systems, December 1992.

[10] Real World Technologies. David Kanter. Inside Nehalem: Intel’s
future processor and system. http://realworldtech.com/page.
cfm?ArticleID=RWT040208182719.

[11] D. Seal. ARM Architecture Reference Manual. Addison-Wesley
Professional, second edition, January 2002.

[12] H. S. Warren. Hacker’s Delight. Addison-Wesley Professional, July
2002.

http://marc.info/?l=linux-kernel&m=127294830417492
http://groups.google.com/group/dynamorio-users/browse_thread/thread/72dd27ca8f5ead66
http://groups.google.com/group/dynamorio-users/browse_thread/thread/72dd27ca8f5ead66
http://dynamorio.org/history.html
http://gcc.gnu.org/bugzilla/show_bug.cgi?id=38306
http://gcc.gnu.org/bugzilla/show_bug.cgi?id=38306
http://realworldtech.com/page.cfm?ArticleID=RWT040208182719
http://realworldtech.com/page.cfm?ArticleID=RWT040208182719

	Introduction
	Optimizing for the LSD
	Determining LSD suitability
	Extracting LSD suitability

	Loop size reduction
	Code requires more than 4 fetches.
	Code contains more than 4 branches.
	Code is too large

	Related work
	Using the LSD_UOPS PMC
	Linux's perf
	Oprofile

	Using DynamoRIO with Daytripper

